IDENTITIES AND CONGRUENCES FOR RAMANUJAN’S ω(q)

نویسندگان

  • JAN H. BRUINIER
  • KEN ONO
چکیده

Recently, the authors [3] constructed generalized Borcherds products where modular forms are given as infinite products arising from weight 1/2 harmonic Maass forms. Here we illustrate the utility of these results in the special case of Ramanujan’s mock theta function ω(q). We obtain identities and congruences modulo 512 involving the coefficients of ω(q).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Powers of Euler’s Product and Related Identities

Ramanujan’s partition congruences can be proved by first showing that the coefficients in the expansions of (q; q)∞ satisfy certain divisibility properties when r = 4, 6 and 10. We show that much more is true. For these and other values of r , the coefficients in the expansions of (q; q)∞ satisfy arithmetic relations, and these arithmetic relations imply the divisibility properties referred to ...

متن کامل

Partition congruences by involutions

We present a general construction of involutions on integer partitions which enable us to prove a number of modulo 2 partition congruences. Introduction The theory of partitions is a beautiful subject introduced by Euler over 250 years ago and is still under intense development [2]. Arguably, a turning point in its history was the invention of the “constructive partition theory” symbolized by F...

متن کامل

Partitions weighted by the parity of the crank

Abstract. A partition statistic ‘crank’ gives combinatorial interpretations for Ramanujan’s famous partition congruences. In this paper, we establish an asymptotic formula, Ramanujan type congruences, and q-series identities that the number of partitions with even crank Me(n) minus the number of partitions with odd crank Mo(n) satisfies. For example, we show that Me(5n + 4)− Mo(5n + 4) ≡ 0 (mod...

متن کامل

Sieved Partition Functions and Q-binomial Coefficients

Abstract. The q-binomial coefficient is a polynomial in q. Given an integer t and a residue class r modulo t, a sieved q-binomial coefficient is the sum of those terms whose exponents are congruent to r modulo t. In this paper explicit polynomial identities in q are given for sieved q-binomial coefficients. As a limiting case, generating functions for the sieved partition function are found as ...

متن کامل

Rankin-cohen Brackets and Van Der Pol-type Identities for the Ramanujan’s Tau Function B. Ramakrishnan and Brundaban Sahu

In [5], D. Lanphier used differential operators studied by Maass [6] to prove the above van der Pol identity (2). He also obtained several van der Pol-type identities using the Maass operators and thereby obtained new congruences for the Ramanujan’s tau-function. In [9], D. Niebur derived a formula for τ(n) similar to the classical ones of Ramanujan and van der Pol, but has the feature that hig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009